Journal of Organometallic Chemistry, 249 (1983) 47-54 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

STABILISATION OF SILICENIUM YLIDS BY ADDUCT FORMATION WITH ALUMINIUM TRIHALIDES: THE CRYSTAL STRUCTURE OF [(Me₃C)₂SiNCMe₃]₂AlClF₂ *

WILLIAM CLEGG, UWE KLINGEBIEL, JUTTA NEEMANN and GEORGE M. SHELDRICK Institut für Anorganische Chemie der Universität, Tammannstrasse 4, D-3400 Göttingen (F.R.G.)

(Received January 18th, 1983)

Summary

Lithium salts of t-butylamino-diorganylfluorosilanes [RR'SiFN(CMe₃)Li] react with aluminium trichloride in petroleum ether, eliminating LiF, to give AlCl₃ adducts of silicenium ylids, (RR'SiNCMe₃)AlCl₃. Hydrolysis of these adducts leads to Me₃CNH₂ · AlCl₃ and (RR'SiO)₃. The compound [(Me₃C)₂SiNCMe₃]₂AlClF₂ has been obtained as the major product of the reaction of (Me₃C)₂SiFN(CMe₃)Li with Al₂Cl₆ in tetrahydrofuran. It forms orthorhombic crystals, space group *Pnna*, with a 16.063(2), b 21.896(2), c 17.987(2) Å, Z = 8. The crystal structure has been determined from 3389 unique diffractometer-measured intensities, and refined to R = 0.070. The molecular structure and NMR spectra support the formulation of this compound as a 2:1 adduct of a silicenium ylid with AlClF₂. The hydrolysis product Me₃CNH₂ · AlCl₃ forms monoclinic crystals, space group *P2₁/n*, with a 8.348(5), b 10.908(4), c 11.322(9) Å, β 103.63(10)°, Z = 4, R = 0.052 for 1067 reflections. Molecules are monomeric in the solid state.

Introduction

Several attempts to stabilise compounds with three-coordinate silicon, or to demonstrate their existence, have been reported [1]. The stabilisation of silaethenes by means of bulky substituents [2] and of disilenes with aryl substituents [3] has

$$\begin{array}{c|c} R_2 Si - NR' & -LiF \\ F & Li \\ R_2 Si - NR' \\ Me_3 SiN \\ N \end{array} \rightarrow R_2 Si - NR' \\ R_2 Si - NR' \\ Me_3 SiN \\ N \end{array}$$
(1)

^{*} Dedicated to Professor H.J. Emeléus on the occasion of his 80th birthday on 22nd June, 1983).

recently been achieved. In the field of silicon-nitrogen compounds, the quest for three-coordinate silicon has followed three different paths:

(a) elimination of electronegative substituents on Si and electropositive substituents on N [4], or of azides from cyclic silapentazenes [5], according to eq. 1;

(b) photolytic or thermal elimination of N_2 from silyl azides, with substituent rearrangement [6], as in eq. 2 (trapping experiments have demonstrated the production of silicenium ylids in such reactions [4–6]);

 $RMe_2SiN_3 \longrightarrow RMeSi=NMe + N_2$ (2)

(c) the reaction of organo- or aminohalogenosilanes with Lewis acids such as Al_2Cl_6 , PF₅ or AsF₅ [7]. Encouraged by the reported stabilisation of a bis(trimethyl-silyl)amino-(trimethylsilylamino)phosphane with Al_2Cl_6 to produce an adduct $R_2NPNR \cdot AlCl_3$ ($R = Me_3Si$) [8], we have investigated the reaction of lithiated aminofluorosilanes [4] with Al_2Cl_6 , and report here the results.

Experimental

Compounds were handled in a dry nitrogen atmosphere. Mass spectroscopy: Varian CH5; NMR spectroscopy: Bruker 60E and FT80 instruments.

Silicenium ylid adducts RR'SiNCMe₃ · AlCl₃

A solution of 0.05 mol Al_2Cl_6 in 100 ml Et₂O was added dropwise at room temperature to a stirred solution of a lithiated aminofluorosilane RR'SiFN(CMe₃)Li (0.1 mol) in 100 ml petroleum ether (b.p. 40-60°C). When the exothermic reaction was complete, the solvent and LiF were removed and the pure product obtained by distillation.

I: R = R' = Me₃C. C₁₂H₂₇AlCl₃NSi, yield 20.8 g (60%), b.p. 112°C/0.01 Torr. Mol.wt. 346.8 calcd., 359 obs. (cryoscopy in C₆H₁₂), 345 obs. (field-ion mass spectroscopy). Analysis: calcd.: C, 41.56; H, 7.85%; obs.: C, 41.82; H, 7.93%. ¹H NMR (30% soln. in C₆H₆, TMS internal standard): δ 1.07 [Si(CMe₃)₂], 1.31 [NCMe₃] ppm; ²⁹Si NMR (30% soln. in C₆H₆/C₆F₆, TMS): δ 50.4 ppm; ²⁷Al NMR (30% soln. in C₆H₆/C₆D₆, AlCl₃/H₂O external standard): δ 106.6 ppm.

II: R = Me₃C, R' = Ph. C₁₄H₂₃AlCl₃NSi, yield 27.4 g (75%), b.p. 137°C/0.01 Torr. Mol.wt. = 366.8 calcd., 365 obs. (mass spectroscopy). Analysis: calcd.: C, 45.85; H, 6.32%; obs.: C, 46.51; H, 6.37%. ¹H NMR (30% soln. in CH₂Cl₂, TMS): δ 1.29 [SiCMe₃], 1.38 [NCMe₃], 7.7 [Ph] ppm; ²⁹Si NMR (30% soln. in C₆H₆/C₆F₆, TMS): δ 28.2 ppm; ²⁷Al NMR (30% soln. in C₆H₆/C₆D₆, AlCl₃/H₂O): δ 111.1 ppm.

A solution of 0.025 mol Al₂Cl₆ in 50 ml Et₂O was added at room temperature to a stirred solution of 0.1 mol $(Me_3C)_2$ SiFN(CMe₃)Li in 100 ml tetrahydrofuran (THF). After removal of the solvents and LiCl, the crude product was recrystallised from n-hexane, to obtain pure bis(di-t-butylsilyl-t-butylimino)chlorodifluoroalane (III), [(Me₃C)₂SiNCMe₃]AlClF₂, yield 21 g (82%), m.p. 138°C. Mass spectrum (70 eV): m/e = 526 (relative intensity 5) $[M]^+$, 511 (32) $[M - CH_3]^+$, 469 (100) $[M - C_4H_9]^+$. ¹H NMR (30% soln. in C₆H₆, TMS): δ 1.22 [Si(CMe₃)₂], 1.43 [NCMe₃] ppm; ¹⁹F NMR (30% soln. in C₆H₆, C₆F₆ internal standard): δ 29.5 ppm; ²⁹Si NMR

TABLE 1

Atom	x	у	Ζ.	U	
Si(1)	1228(1)	- 745(1)	3272(1)	477(4)	
Al(1)	2500	0	3779(1)	445(6)	
Cl(1)	2500	0	4975(1)	645(6)	
F(1)	1240(1)	11(1)	3501(1)	539(8)	
N(1)	2267(2)	- 780(2)	3439(2)	472(13)	
C(11)	877(3)	- 754(2)	2264(2)	625(18)	
C(111)	7(3)	-481(3)	2175(4)	929(26)	
C(112)	1468(4)	- 363(3)	1813(3)	861(26)	
C(113)	872(4)	- 1395(3)	1919(3)	979(28)	
C(12)	439(3)	-1048(2)	3959(3)	589(18)	
C(121)	40(3)	- 1667(3)	3728(3)	846(24)	
C(122)	844(3)	-1132(3)	4728(3)	772(22)	
C(123)	- 263(3)	- 572(3)	4058(3)	849(24)	
C(13)	2814(3)	- 1335(2)	3430(3)	634(19)	
C(131)	2291(3)	- 1913(2)	3412(4)	834(25)	
C(132)	3354(3)	- 1352(3)	4132(3)	846(25)	
C(133)	3372(3)	- 1327(3)	2740(4)	916(27)	
Si(2)	6682(1)	8224(1)	1338(1)	508(4)	
Al(2)	7226(1)	7500	2500	526(7)	
Cl(2)	8565(1)	7500	2500	820(8)	
F(2)	6953(2)	7469(1)	1357(1)	651(10)	
N(2)	6818(2)	8263(1)	2271(2)	469(12)	
C(21)	5568(3)	8205(2)	975(3)	680(20)	
C(211)	5509(5)	7916(3)	215(3)	1028(29)	
C(212)	5047(3)	7828(3)	1524(4)	888(26)	
C(213)	5153(4)	8826(3)	945(5)	1129(32)	
C(22)	7485(4)	8538(3)	667(3)	856(24)	
C(221)	8303(3)	8689(3)	1047(4)	1099(32)	
C(222)	7181(5)	9140(3)	260(4)	1351(39)	
C(223)	7675(5)	8051(3)	63(4)	1241(35)	
C(23)	6775(3)	8827(2)	2748(3)	527(16)	
C(231)	7563(4)	8871(2)	3224(3)	834(24)	
C(232)	6014(3)	8807(2)	3241(3)	767(22)	
C(233)	6722(3)	9398(2)	2261(3)	705(21)	

ATOMIC COORDINATES ($\times\,10^4$) and equivalent isotropic thermal parameters ($\dot{A}^2\,\times\,10^4$) for III

(30% soln. in C₆H₆/C₆F₆, TMS): δ 27.6 ppm. J(Si-F) 229.7 Hz, ³J(Si-F) 4.21 Hz.

Attempts to obtain single crystals of I suitable for X-ray diffraction led to hydrolysis and formation of $Me_3CNH_2 \cdot AlCl_3$ (IV), for which the crystal structure was determined. Crystals of III suitable for X-ray investigation were obtained from n-hexane.

Crystal data

III: $C_{24}H_{54}AlClF_2N_2Si_2$, $M_r = 527.3$, orthorhombic, space group *Pnna*, *a* 16.063(2), *b* 21.896(2), *c* 17.987 (2) Å, *U* 6326.3 Å³, Z = 8, D_c 1.107 g cm⁻³, F(000) = 2304, $\lambda(Mo-K_{\alpha}) 0.71069$ Å, $\mu 2.46$ cm⁻¹.

IV: $C_4H_{11}AlCl_3N$, $M_r = 206.5$, monoclinic, space group $P2_1/n$, a 8.348(5), b

Atom	x	у	Z	U	
Al	2050(1)	1289(1)	7133(1)	540(5)	
Cl(1)	2351(2)	-198(1)	6012(1)	725(5)	
Cl(2)	327(2)	2584(1)	6180(1)	826(6)	
Cl(3)	1439(2)	651(2)	8726(1)	972(7)	
N	4023(4)	2262(3)	7690(4)	693(16)	
C(1)	5690(5)	2057(4)	7513(4)	551(16)	
C(2)	6836(6)	3063(5)	8137(5)	794(22)	
C(3)	5561(10)	2076(10)	6182(6)	1470(43)	
C(4)	6254(8)	835(5)	8067(8)	1302(37)	

ATOMIC COORDINATES ($\times\,10^4)$ and equivalent isotropic thermal parameters ($\mathring{A}^2\,\times\,10^4)$ for IV

10.908(4), c 11.322(9) Å, β 103.63(10)°, U 1002.0 Å³, Z = 4, D_c 1.369 g cm⁻³, F(000) = 424, $\lambda(Mo-K_{\alpha})$ 0.71069 Å, μ 9.38 cm⁻¹.

Data collection

Crystals were sealed in capillaries and examined on a Stoe-Siemens AED diffractometer. Unit cell parameters were obtained from 2θ values of reflections (28 and 12, for III and IV respectively) centred at $\pm \omega$. Intensities were measured by a real-time profile-fitting procedure [9]. No absorption corrections were applied.

III: crystal size $0.9 \times 0.5 \times 0.5$ mm, $2\theta_{max} 50^{\circ}$ C, 3389 reflections with $F > 4\sigma(F)$. IV: crystal size $1.0 \times 0.6 \times 0.6$ mm, $2\theta_{max} 45^{\circ}$, 1067 reflections with $F > 4\sigma(F)$.

Structure solution and refinement

Both structures were solved by automatic direct methods, and refined to a minimum value of $\Sigma w \Delta^2 [\Delta = |F_0| - |F_c|; w^{-1} = \sigma^2(F) + gF^2$, with g = 0.00069 for III, 0.00120 for IV]. Hydrogen atoms were constrained to give C-H 0.96, N-H 0.87 Å, H-C-H = H-N-H = 109.5°, $U(H) = 1.2U_{eq}(C)$ or $1.2U_{eq}(N)$, where U_{eq} is the

Fig. 1. Molecular structure of III showing the atom numbering scheme for one of the two independent molecules. Hydrogen atoms are omitted for clarity.

TABLE 2

TABLE 3

BOND LENGTHS (Å) AND ANGLES (°) FOR III (A prime denotes a symmetry-related atom)

Si(1)-F(1)	1.706(3)	Si(2)-F(2)	1.711(3)
Si(1) - N(1)	1.698(4)	Si(2)-N(2)	1.695(4)
Si(1)-C(11)	1.898(5)	Si(2)-C(21)	1.905(5)
Si(1) - C(12)	1.892(5)	Si(2)-C(22)	1.896(6)
Al(1)-Cl(1)	2.151(3)	Al(2)-Cl(2)	2.151(3)
Al(1)-F(1)	2.085(2)	Al(2)-F(2)	2.103(3)
Al(1) - N(1)	1.853(4)	Al(2)-N(2)	1.842(3)
N(1)-C(13)	1.499(6)	N(2)-C(23)	1.504(6)
C(11)-C(111)	1.529(7)	C(21)-C(211)	1.509(8)
C(11)-C(112)	1.513(8)	C(21)–C(212)	1.537(8)
C(11)-C(113)	1.533(8)	C(21)-C(213)	1.515(8)
C(12)-C(121)	1.555(8)	C(22)-C(221)	1.517(9)
C(12)-C(122)	1.540(7)	C(22)–C(222)	1.584(9)
C(12)-C(123)	1.545(8)	C(22)-C(223)	1.552(9)
C(13)-C(131)	1.520(7)	C(23)-C(231)	1.532(7)
C(13)-C(132)	1.534(8)	C(23)-C(232)	1.511(7)
C(13)-C(133)	1.529(8)	C(23)-C(233)	1.529(7)
F(1)-Si(1)-N(1)	89.5(2)	F(2)-Si(2)-N(2)	89,8(2)
F(1)-Si(1)-C(11)	104.2(2)	F(2)-Si(2)-C(21)	103.0(2)
N(1) - Si(1) - C(11)	117.4(2)	N(2) - Si(2) - C(21)	117.5(2)
F(1)-Si(1)-C(12)	100.9(2)	F(2) - Si(2) - C(22)	101.0(2)
N(1) - Si(1) - C(12)	121.8(2)	N(2) - Si(2) - C(22)	121.7(2)
C(11) - Si(1) - C(12)	114.9(2)	C(21) - Si(2) - C(22)	115.3(2)
Cl(1) - Al(1) - F(1)	103.9(1)	Cl(2) - Al(2) - F(2)	102.0(1)
Cl(1) - Al(1) - N(1)	109.3(1)	Cl(2) - Al(2) - N(2)	110.8(1)
F(1) - AI(1) - N(1)	74.7(1)	F(2) = Al(2) = N(2)	74 8(1)
F(1) - A(1) - F(1')	152.3(2)	F(2) - A(2) - F(2')	156 0(2)
N(1) = A(1) = F(1')	96 .1(1)	N(2) - A(2) - F(2')	96.6(1)
N(1) - A(1) - N(1')	1414(2)	N(2) - A(2) - N(2')	138 4(2)
Si(1) - F(1) - Al(1)	93 3(1)	Si(2) - F(2) - Al(2)	92 3(1)
Si(1) - N(1) - Al(1)	1024(2)	Si(2) - N(2) - Al(2)	102 7(2)
Si(1) - N(1) - C(13)	127.7(3)	Si(2) - N(2) - C(23)	126 9(3)
A(1) = N(1) = C(13)	129.3(3)	Al(2) - N(2) - C(23)	129 4(3)
Si(1)-C(1)-C(11)	111.5(4)	Si(2) = C(21) = C(211)	112.2(4)
Si(1)-C(11)-C(112)	108.6(3)	Si(2) - C(21) - C(212)	107.7(4)
C(11)-C(1)-C(112)	107.2(4)	C(211)-C(21)-C(212)	108.7(5)
Si(1)-C(11)-C(113)	113.5(4)	Si(2) - C(21) - C(213)	114.0(4)
C(11) - C(11) - C(113)	108.1(5)	C(211) - C(21) - C(213)	108.5(5)
C(112) - C(11) - C(113)	107 7(4)	C(212) - C(21) - C(213)	105 4(5)
Si(1) = C(12) = C(121)	114 0(4)	Si(2) = C(22) = C(221)	112 3(4)
Si(1) - C(12) - C(122)	110.2(3)	Si(2) - C(22) - C(222)	112.7(5)
C(121) = C(12) = C(122)	108 0(4)	C(221) = C(22) = C(222)	107.1(5)
S(1) = C(12) = C(123)	109 1(4)	Si(2) = C(22) = C(223)	109 3(4)
C(121) = C(12) = C(123)	108.5(4)	C(221) = C(22) = C(223)	107.1(5)
C(122) = C(12) = C(123)	106.5(4)	C(221) = C(22) = C(223)	108.0(5)
N(1) = C(13) = C(131)	110 6(4)	N(2) = C(23) = C(231)	109 4(4)
N(1) = C(13) = C(132)	110 0(4)	N(2) = C(23) = C(232)	110 4(4)
C(131) = C(13) = C(132)	108.0(5)	C(231) = C(23) = C(232)	110.0(4)
N(1) = C(13) = C(133)	110 1(4)	N(2) = C(23) = C(232)	110.0(4)
C(131) = C(13) = C(133)	108.4(5)	C(231) = C(23) = C(233)	108 3(4)
C(132) = C(13) = C(133)	109 7(4)	C(232) = C(23) = C(233)	108 3(4)
(122) - ((12) - ((122))	102.7(4)	(232) - (23) - (233)	100.5(4)

Al-Cl(1)	2.111(2)	Al-Cl(2)	2.120(2)	
Al-Cl(3)	2.104(2)	AI-N	1.936(4)	
N-C(1)	1.469(6)	C(1)-C(2)	1.516(7)	
C(1)-C(3)	1.485(9)	C(1)-C(4)	1.501(8)	
Cl(1)-Al-Cl(2)	111.6(1)	Cl(1)-Al-Cl(3)	110.4(1)	
Cl(2)-Cl-Cl(3)	112.6(1)	Cl(1)-Al-N	113.8(2)	
Cl(2)-Al-N	102.9(1)	Cl(3)-Al-N	105.2(2)	
Al-N-C(1)	129.3(3)	N-C(1)-C(2)	109.9(4)	
N-C(1)-C(3)	106.9(4)	C(2)-C(1)-C(3)	110.4(5)	
N-C(1)-C(4)	107.0(4)	C(2)-C(1)-C(4)	110.3(4)	
C(3)-C(1)-C(4)	112.1(6)			

TABLE 4

Fig. 2. Molecular structure of IV showing the atom numbering scheme.

equivalent isotropic thermal parameter for a C or N atom, defined as one-third of the trace of the orthogonalised U_{ij} matrix. Anisotropic thermal parameters were refined for all non-hydrogen atoms. Complex scattering factors were used [10]. Final difference syntheses contained no significant features.

III: 345 parameters, R = 0.070, $R' [= (\Sigma w \Delta^2 / \Sigma w F_0^2)^{1/2}] = 0.077$, mean shift/e.s.d. = 0.01, max. = 0.04; slope of normal probability plot [11] = 1.51.

IV: 91 parameters, R = 0.052, R' = 0.066, mean shift/e.s.d. = 0.08, max. = 0.35, slope = 1.40.

Final atomic coordinates, bond lengths and angles are given in Tables 1-4. Structure factor tables may be obtained from the authors. Figures 1 and 2 show the molecular structures.

Results and discussion

Reaction of $RR'SiFN(CMe_3)Li$ with Al_2Cl_6 in petroleum ether leads to elimination of LiF and formation of a 1:1 adduct of the silicenium ylid $RR'SiNCMe_3$ with $AlCl_3$ (eq. 3). I ($R = R' = Me_3C$) and II ($R = Me_3C$, R' = Ph) are colourless solids, extremely moisture-sensitive, and can be distilled without decomposition in vacuo. The partial zwitterion character is supported by the very low-field ²⁹Si NMR chemical shifts (δ

50.4 for I, 28.3 ppm for II), which are similar to values found for silaethenes [2]. The ²⁷Al NMR chemical shifts (δ 107 for I, 111 ppm for II) are typical of four-coordinate aluminium [12]. According to cryoscopic measurements, I and II are monomeric in solution in C₆H₁₂. We assign the structure shown to I and II, with four-membered ring and bridging chlorine, by analogy with the structure of III, determined by X-ray diffraction and discussed below.

Attempts to obtain good quality single crystals of I have so far resulted in hydrolysis. This produces $Me_3CNH_2 \cdot AlCl_3$ (IV) and the cyclic siloxane $[(Me_3C)_2SiO]_3$ [13], the water oxygen atom attacking the electropositive silicon atom. IV exists in the solid state as a simple monomer, the adduct of Me_3CNH_2 with $AlCl_3$. Bond lengths and angles are very similar to those obtained for $Me_3N \cdot AlCl_3$ [14].

In the synthesis of I, the 2:1 adduct of the silicenium ylid $(Me_3C)_2SiNCMe_3$ with AlClF₂ (III) can be isolated as a by-product. The relative ease with which LiF or LiCl is eliminated is dependent on the reaction conditions, such as temperature, solvent, and reagent concentrations. At room temperature, and with a 4:1 mole ratio of lithium salt in THF to Al₂Cl₆ in Et₂O, LiCl elimination is preferred, and III is the main product (eq. 4). III is a colourless crystalline solid, soluble in the common organic solvents. It is moisture sensitive.

The unit cell of crystalline III contains two independent molecules, each with the Al-Cl bond lying along a crystallographic two-fold rotation axis. Differences between the two molecules are slight: a least-squares fit of the $(NSiF)_2$ AlCl skeletons gives a r.m.s. deviation of 0.045 Å for the fitted atoms; deviations for the carbon atoms are 0.039-0.231 Å, presumably because of small differences in torsion angles about the Si-C and N-C bonds in the two molecules.

The molecular structure, with bridging fluorine atoms, supports the interpretation of the molecule as a 2:1 adduct of the silicenium ylid with $AlClF_2$; this is also in agreement with the low-field ²⁹Si NMR chemical shift of 27.6 ppm, indicative of electropositive silicon, as in the 1:1 adducts I and II. Coordination of the nitrogen

atoms is planar (sum of the bond angles around N(1) and N(2) 359.4 and 359.0°, respectively). Double-bond character is evident both in the short Si-N bonds (1.697(4) Å) and in the Al-N bonds (1.858(3) Å, cf. 1.770(2) and 1.963(2) for the probably double and single Al-N bonds in a molecule containing both [15] and 1.936(4) Å for the single bond in IV).

Acknowledgements

We thank the Verband der Chemischen Industrie and the State of Niedersachsen for financial support. All computer programs were written by WC and GMS.

References

- J.P. Corriu and M.J. Henner, J. Organomet. Chem., 74 (1974) 1; J.B. Lambert and H.J. Sun, J. Amer. Chem. Soc., 98 (1976) 5611; T.J. Barton, A.K. Hovland and C.R. Tully, J. Amer. Chem. Soc., 98 (1976) 5695.
- 2 A.G. Brook, F. Abdesaken, B. Gutekunst, G. Gutekunst and R.K. Kallury, J. Chem. Soc., Chem. Commun., (1981) 191.
- 3 R. West and M.J. Fink, Science, 214 (1981) 1343; S. Masamune, Y. Hanzawa, S. Murakami, T. Bally and J.F. Blount, J. Amer. Chem. Soc., 104 (1982) 1150; P. Boudjouk, B.-H. Han and K.R. Anderson, J. Amer. Chem. Soc., 104 (1982) 4992.
- 4 U. Klingebiel and A. Meller, Angew. Chem. Int. Ed. Engl., 15 (1976) 312; U. Klingebiel, Chem. Ber., 111 (1978) 2735.
- 5 N. Wiberg and G. Preiner, Angew. Chem. Int. Ed. Engl., 17 (1978) 362; N. Wiberg and G. Ziegleder. Chem. Ber., 111 (1978) 2123.
- 6 D.R. Parker and L.H. Sommer, J. Amer. Chem. Soc., 98 (1976) 618; W. Ando, H. Tsumaki and M. Ikeno, J. Chem. Soc., Chem. Commun., (1981) 597; W.T. Reichle, Inorg. Chem., 3 (1964) 402.
- 7 A.H. Cowley, M.C. Cushner and P.E. Riley, J. Amer. Chem. Soc., 102 (1980) 624; M.K. Murphy and J.L. Beauchamp, J. Amer. Chem. Soc., 98 (1976) 5781.
- 8 E. Niecke and R. Kröher, Angew. Chem. Int. Ed. Engl., 15 (1976) 692.
- 9 W. Clegg, Acta Cryst., A, 37 (1981) 22.
- 10 International Tables for X-Ray Crystallography, Vol. IV, Kynoch Press, Birmingham, U.K., 1974. pp. 99, 149.
- 11 S.C. Abrahams and E.T. Keeve, Acta Cryst., A, 27 (1971) 157.
- 12 H. Haraguchi and S. Fujiwara, J. Phys. Chem., 73 (1969) 3467.
- 13 U. Klingebiel, Angew. Chem. Int. Ed. Engl., 20 (1981) 678; W. Clegg, Acta Cryst., B. 38 (1982) 1648.
- 14 A. Almenningen, A. Haaland, T. Haugen and D.P. Novak, Acta Chem. Scand., 27 (1973) 1821.
- 15 M.J. Zaworotko and J.L. Atwood, Inorg. Chem., 19 (1980) 268.